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Abstract. Contrastive methods have led a recent surge in the perfor-
mance of self-supervised representation learning (SSL). Recent methods
like BYOL or SimSiam purportedly distill these contrastive methods
down to their essence, removing bells and whistles, including the negative
examples, that do not contribute to downstream performance. These
“non-contrastive” methods work surprisingly well without using negatives
even though the global minimum lies at trivial collapse. We empirically
analyze these non-contrastive methods and find that SimSiam is ex-
traordinarily sensitive to dataset and model size. In particular, SimSiam
representations undergo partial dimensional collapse if the model is too
small relative to the dataset size. We propose a metric to measure the
degree of this collapse and show that it can be used to forecast the down-
stream task performance without any fine-tuning or labels. We further
analyze architectural design choices and their effect on the downstream
performance. Finally, we demonstrate that shifting to a continual learning
setting acts as a regularizer and prevents collapse, and a hybrid between
continual and multi-epoch training can improve linear probe accuracy by
as many as 18 percentage points using ResNet-18 on ImageNet.

Keywords: self-supervised learning, continual learning

1 Introduction

Self-supervised representation learning (SSL) has seen steady progress in the
last several years. Recent success has been obtained via Siamese representation
learning: given an input image, the neural network encoder is trained such that
the feature encoding of different augmentations, aka “views,” of the image are
close to each other. However, trivially training such an image encoder leads to
collapse, where the encoder outputs a constant representation irrespective of
the input. Contrastive methods avoid this collapse by encouraging the learned
representations to be far apart for views coming from very different images.
There are many ways to implement this contrastive objective, either via instance
discrimination, where augmentations from the same image are treated as positives
and from different images as negatives [19,16,26,6,1], or by contrasting different
clusters of positives [3,4]. These approaches work well but are bottlenecked by
their reliance on negatives, as it is tricky to ensure that the negative samples are
not too easy to distinguish [35].
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Fig. 1: Non-contrastive methods and sensitivity to model size. Left: given aug-
mentations x1 and x2 of the same starting image, non-contrastive Siamese methods learn
to use x1 to predict the representation of x2. SimSiam uses only the stop-grad, whereas
BYOL additionally uses an exponential moving average for the second branch. Right:
in contrast to methods like MoCo-v3 [9] or BYOL [15], SimSiam linear probe accuracy
drops dramatically when the model is too small relative to the dataset complexity. We
can close the performance gap and outperform BYOL on ResNet-18 by applying a
hybrid of continual and multi-epoch training as discussed in Section 4.

Recent methods have found an alternative by removing the negatives al-
together and adding architectural constraints, e.g. the momentum encoder in
BYOL [32] or the stop gradient in SimSiam [7]. These “non-contrastive” mod-
els achieve strong results in the typical ImageNet pretraining setting, which is
surprising because there is no strict constraint to prevent the aforementioned
collapse. Some prior work has analyzed non-contrastive learning dynamics in a
simple linear model [34], but analysis of when collapse happens is still ad hoc
and largely anecdotal.

In this work, we seek to empirically understand the scenarios under which
collapse occurs in these non-contrastive Siamese networks and suggest potential
ways to avoid it. Contrary to previous methods that claim that the stop-gradient,
prediction head, and high predictor learning rate are enough to prevent the
collapse [7,34], we show that collapse additionally depends on the model capacity
relative to the data complexity. For instance, small networks trained on large
datasets are likely to collapse despite using tricks like stop-gradient or BatchNorm
[21] on the output of the projection MLP. More importantly, the collapse need not
be complete. We find that a subset of dimensions in the learned representation
can collapse as well, which leads to lower than expected performance. We define
a concrete metric based on the rank of the representations to measure the degree
of collapse. As expected, we show that just achieving low loss during training
time does not correlate with downstream fine-tuning performance; one has to
take the collapse into account as well.
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Finally, we explore ways to prevent this collapse and find that a continual
learning regime, as opposed to the dominant practice of training for multiple
epochs, offers a promising alternative. An apples-to-apples comparison with the
same number of total training iterations in Figure 1 shows a gain of up to 18%
over vanilla SimSiam using ResNet18. We summarize our contributions below:

– Contrary to previous work that claims SimSiam has no issues with collapse,
we show that SimSiam performance drops significantly when the model
capacity is too small relative to the data complexity.

– We define a rank-based metric to measure the degree of partial dimensional
collapse, i.e., the representations contain redundant information which leads
to the decline in downstream performance.

– Linear regression, using our collapse metric and the SimSiam loss, can ac-
curately predict the linear probing accuracy. This can be used to compare
models without using labels or additional training time.

– We show that model width is more important for downstream performance
than depth, even when the total number of parameters is accounted for.

– We show that switching to a continual learning setting eliminates collapse
and restores SimSiam accuracy by as much as 18 percentage points.

2 Related Work

Self-Supervised Learning Contrastive learning approaches learn a representation
space where positive sample pairs are closer and negative sample pairs are driven
further apart [6,16,26,19,28,18]. Often, for a given image from the dataset, a
positive sample pair is constructed using an image augmentation. Negative sample
pairs are generated by randomly sampling different images from the dataset.
One of the drawbacks of these approaches is that training with explicit negative
pairs might cause representations of very similar images to be pushed too far
apart, depending on how the negatives are mined. More recent non-contrastive
approaches are able to learn representations without the need for negative samples
at all [7,15], using only image augmentations and stop gradient.

Understanding Self-supervised Learning [34] analyzes a surprisingly predictive
linear model that represents the BYOL and SimSiam settings. However, their
linear model makes no predictions about the effect of model capacity or dataset
complexity. Most prior work has focused on understanding contrastive learning
[29,22,33], but understanding of non-contrastive Siamese learning remains limited.

Continual Learning Continual learning focuses on how to train models when
presented with a stream of (potentially correlated) data. Typically, sticking to
the multi-epoch procedure and just taking gradient steps on the data as it ar-
rives, without any modification to the training algorithm, leads to catastrophic
forgetting [14,23], where model performance deteriorates on past data. A wide
variety of continual learning methods have been proposed to address this prob-
lem. Regularization-based methods such as elastic weight consolidation [23] or
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sharpness-based regularization [10] seek to constrain the parameters that strongly
affect the loss. Replay-based or coreset methods store summary information about
previous data, such as class-based cluster centers [31]. However, these continual
learning methods have always performed worse than a model that can train on all
of the data at once, i.e. multi-epoch training is preferable to continual learning.
In this paper, we surprisingly draw the opposite conclusion: continual learning,
without applying any fancy tricks, yields much higher downstream performance
than multi-epoch training.

3 Relative Underparameterization Causes Collapse

Smaller networks, such as ResNet-18 and ResNet-34 [17], are useful for a variety
of reasons. They train faster and require less GPU memory, which is especially
desirable for academics or practitioners with limited compute resources. Smaller
networks also have lower latency, higher throughput, and better energy efficiency
at inference time. Typically, we expect model accuracy or other metrics to
fall gracefully as we reduce the size of the model. However, Figure 1 shows
that SimSiam performance drops significantly when using ResNet-18 instead
of ResNet-50. This is unexpected, as these networks still have enough capacity
to fit the SimSiam objective (BYOL, which uses the same loss function, does
well). Furthermore, SimSiam with ResNet-18 has been shown [8] to match the
performance of contrastive learning algorithms like SimCLR [6] on simple datasets
like CIFAR-10 [24]. In this section, we seek to explain why smaller SimSiam
models tend to have drastically lower performance on larger datasets.

3.1 Experimental Setup

Non-contrastive Siamese methods, e.g. BYOL and SimSiam, have the same
general architecture, shown in Figure 1(a). Two views x1 and x2 of the same
image are generated with two different augmentations, and x1 is passed into
the online backbone network on the left, while x2 is passed into the target
backbone network on the right. The backbone is typically a ResNet variant [17].
The outputs of these two backbone networks are passed into the corresponding
projection MLPs, and then a prediction MLP is used to predict the projected
representation of x2 from the projected representation of x1. SimSiam uses the
same network for the online and target backbone and projection networks and
uses a stop-gradient to prevent gradient signal from propagating through the
second branch. BYOL also uses a stop-grad, but additionally uses an exponential
moving average (EMA) to update the target backbone and projection networks.

SimSiam configuration Unless otherwise stated, we use the same hyperparameters
for each SimSiam model, from the original SimSiam ResNet-50 configuration [8]:
we use batch size 256, which works well for ResNet-50 in the 100-epoch pretraining
setting, and use SGD with learning rate 0.05, momentum 0.9, and cosine learning
rate decay. Regardless of how much data we train on, or in what order the data is
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Fig. 2: SimSiam performance as a function of dataset size. For the ResNet-18
and ResNet-34 architectures, we train 6 SimSiam models from scratch, each on a
different size subset of ImageNet (1%, 5%, 10%, 20%, 50%, and 100%). Left: as we
increase the amount of training data, the linear probing accuracy and k-NN accuracy
increase until a certain model size to dataset size ratio, after which accuracy begins to
fall. Right: This increase and decrease in performance is not apparent if we only look at
the SimSiam loss, whether it is on the training subset or validation set.

used, we train the model for 500 thousand gradient steps, which is equivalent to
100 epochs on 100% of ImageNet with a batch size of 256. Code to reproduce our
experiments is available at https://github.com/alexlioralexli/noncontrastive-ssl.

Linear probe configuration Following the procedure in [8], we replace the pro-
jection and prediction heads with a fully connected layer and freeze the ResNet
backbone. We perform 90 epochs of linear probing with the LARS optimizer, learn-
ing rate 0.1, and cosine learning rate decay. We use the standard augmentations:
RandomResizedCrop, random horizontal flip, and normalization.

K-nearest neighbors configuration We remove the projection and prediction heads,
and just use the ResNet backbone to compute representations. For each image in
the ImageNet-1k training and validation sets, we resize the image to 256x256,
followed by a 224x224 center crop and normalization. We use cosine similarity
to determine the nearest neighbors of each of the validation images, as this
consistently yielded higher accuracies than the Euclidean distance. We select the
value of k that maximizes the validation accuracy. The k-NN accuracy is fast to
compute, requiring only about 10 minutes on an RTX 3090 GPU, compared to
roughly 16 hours for linear probing. k-NN is also consistent and does not vary
across evaluations, unlike linear probing.

3.2 Performance Impact of Model Size Relative to Dataset Size

If ResNet-18 works well with SimSiam on CIFAR-10, but does poorly on ImageNet-
1k, what causes this difference? The complexity of the dataset matters as Ima-
geNet is much more difficult to fit than CIFAR-10 (i.e. it has a larger intrinsic

https://github.com/alexlioralexli/noncontrastive-ssl


6 A. Li et al.

Table 1: Network width matters more than depth or number of parameters.

Block type Layers Width Multiplier Repr. dim. Params Lin. Acc.

Basic 18 1x 512 11.7M 30.0%
Basic 34 1x 512 21.8M 16.8%
Bottleneck 50 1x 2048 25.6M 68.1%
Bottleneck 26 1x 2048 16.0M 61.7%
Bottleneck 26 2x 2048 39.6M 62.6%
Basic 50 1x 512 31.9M 17.5%

dimension [25]). Model size also matters as SimSiam + ResNet-50 is capable
of SOTA performance on certain SSL benchmarks. Hence, we hypothesize that
it is actually the ratio of model capacity relative to dataset complexity that
determines the SimSiam performance. The larger and more complex the dataset,
the bigger the model needs to be.

To test our hypothesis, we perform an experiment where we train ResNet-18
and ResNet-34 SimSiam models for the same number of gradient steps but on
different amounts of data from ImageNet-1k [11], ranging in {1%, 5%, 10%, 20%,
50%, 100%}. By varying the size of the training set, we change how difficult
it is to fit. Figure 2 (left) shows the k-NN validation accuracy of these models.
Both architectures have a “sweet spot” in the size of the training set. ResNet-18
peaks at 5% of ImageNet-1k, whereas ResNet-34 peaks with more data at 10%.
After the peak, k-NN accuracy falls and stays relatively flat. This supports our
hypothesis since more data helps up to a certain threshold. However, this increase
and decrease in accuracy is not visible in any of the loss metrics shown in Figure 2
(right). The ResNet-18 accuracy peaks at 5% of ImageNet, and the ResNet-34
accuracy peaks at 10% of ImageNet, yet the train subset’s loss increases and the
validation loss decreases as the model is trained on more of ImageNet.

It is worth noting that the loss on the training subset and the loss on the
validation set coincide almost perfectly for every subset of at least 10%. This
indicates that the SimSiam model is not overfitting in the classical train/test
sense, and theories such as “deep double descent” [27], which characterize the
size of the effect of model size on the generalization gap between the train and
test loss, do not explain the effect of varying model size or dataset size. One
thing we notice is that ResNet-34 consistently performs worse than ResNet-18,
which we analyze below.

3.3 Performance Impact of Model Architecture

In this section, we analyze what architectural components determine model
capacity in non-contrastive SSL. In Table 1, we show the performance of various
ResNet variants trained with SimSiam. The top three rows are vanilla ResNet-
18, -34, and -50 models, and the last 3 correspond to new variants that mix
various components. First, we find that increasing depth does not always improve
performance, especially if the model is not wide enough. Increasing the depth
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Fig. 3: Partial dimensional collapse for large subsets. Left: the obvious form of
dimensional collapse is when a particular dimension collapses to a constant value. Less
obvious is when two representation dimensions covary together, i.e. one can be predicted
from the other. There appears to be variation in each dimension, but the second
dimension conveys no additional information. The singular values from PCA capture
both kinds of collapse. Middle: we plot the singular values of representations computed
by SimSiam ResNet-18 models trained on different size subsets of ImageNet. Right:
the cumulative explained variance corresponding to the cumulative sum of the singular
values, divided by the total. The faster this rises, the more collapse has occurred.

from ResNet-18 to ResNet-34 to a depth-50 network with Basic blocks actually
decreases downstream performance. We hypothesize that increased depth makes
it easier for SimSiam to lose information at every layer and compute collapsed
representations, since the size of the vector passed between layers is limited.

In contrast, using Bottleneck residual blocks (1x1 conv to decrease the number
of channels, then 3x3 conv, then 1x1 to increase the number of channels) to
increase the width of the network is much more effective. ResNet-Bottleneck-
26 achieves 61.7% linear probing accuracy with fewer parameters than even a
ResNet-34. Doubling the width of that network further increases accuracy by
another 0.9%. Overall, model capacity corresponds more to width than depth. We
also tried training Vision Transformers [12] with SimSiam, but found uniformly
negative results. We discuss this in Appendix A.4.

3.4 Performance Drops due to Partial Dimensional Collapse

We now discuss the drop in performance of ResNet18 and ResNet34 described in
Section 3.2 and argue that it is caused by partial dimensional collapse, where
some parts of the representations either are constant across the dataset or covary
with other parts of the representation. Dimensional collapse reduces the amount
of information contained in the learned representations and is possible because
SimSiam lacks any repulsive term to push representations apart.

Figure 3 (left) shows a toy visualization of each kind of collapse. A key
observation is that collapse can occur even if every representation dimension
individually has high variance (see collapse type 2). This form of collapse is
not captured by the collapse metric in [8], which for every dimension measures
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the standard deviation of that representation dimension across examples. In
contrast, after using our model to obtain a d-dimensional representation for each
image in the training set of N samples, we perform PCA on the resulting N × d
representation matrix to obtain d singular values σ1 ≥ σ2 ≥ · · · ≥ σd. More
collapse should show up as smaller singular values, and PCA finds orthogonal
axes that maximize variance, so it is capable of capturing both kinds of collapse.

In Figure 3 (middle), we examine the singular values of ResNet-18 models
trained with varying amounts of data. At 5% of ImageNet and beyond, roughly
the last 80 singular values collapse to 0, and the last 300 singular values noticeably
decay more when the model is trained on more data. To visualize the degree of
collapse, we look at the cumulative explained variance of the singular values:

(Cumulative explained variance)j =

∑j
i=1 σi∑d
k=1 σk

(1)

The cumulative explained variance measures the rank of the representations and
rises monotonically from 0 to 1; the more quickly it does so, the more the model
has collapsed. The {10%, 20%, 50%, and 100%} ResNet-18 models have roughly
the same explained variance curves, indicating the same high degree of collapse,
which fits the fact that the k-NN accuracy flatlines for these models in Figure 2.
The 1% model exhibits no collapse at all, and the 5% model collapses to a small
degree. Despite collapsing more than the 1% model, the 5% ResNet-18 model
has the best k-NN accuracy. We hypothesize that this is because it has much
lower SimSiam loss. We explore this tradeoff in Section 3.5.

In contrast to [8], which poses collapse as an “all-or-nothing” phenomenon
that can occur when removing the stop-gradient or the prediction head, we find
that collapse exists on a spectrum. Partial dimensional collapse is not unique
to noncontrastive methods like SimSiam. Prior work found that contrastive
methods like SimCLR can have partial dimensional collapse in the projected
embedding space (output of the projection MLP) [22], which is different from
the representation space as shown here (input to the projection MLP).

3.5 Predicting Performance from Collapse Metric and SimSiam
Loss

There is a fundamental tradeoff between dimensional collapse and the SimSiam
prediction loss. More collapse reduces the entropy in the representations and
makes them more predictable, which decreases the loss, but this comes at the
cost of lower representation quality. In this section, we quantify how these two
properties can accurately predict model performance on a downstream task.

We form a collection of 22 trained ResNet-18 and ResNet-34 models, consisting
of the models trained on different size ImageNet subsets (from Section 3.2) and
models trained using different data orderings (from Section 4). For each model,
we compute the SimSiam loss on the ImageNet validation set, the validation
accuracy of a linear probe trained on ImageNet, and a metric that measures
the degree of dimensional collapse in the representations. Following the same
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Fig. 4: Accuracy is predictable from loss and collapse. We train a collection of
ResNet-18 and ResNet-34 models using a variety of ImageNet subset sizes and training
methods (see Section 4). We then fit a simple linear model to predict the validation
linear probing accuracy from the loss on the ImageNet validation set and the area under
the explained variance curve. The simple linear model is highly predictive across both
architectures, with R2 = 0.95 indicating a very good linear fit. Note that either of these
features alone is a poor predictor for downstream accuracy.

PCA procedure as Section 3.4, we compute the d singular values σ1, . . . , σd of
the representations of the full training set. Our collapse metric corresponds to
the area under the cumulative explained variance of the singular values:

AUC =
1
d

∑d
i=1

∑i
j=1 σj∑d

k=1 σk

(2)

The AUC can range from 0.5 to 1, and larger AUC values reflect more collapse.
AUC = 0.5 means all of the singular values are identical, which indicates that no
collapse is occurring. AUC = 1 means that the last d− 1 singular values are 0,
which indicates severe dimensional collapse.

Using values computed from our collection of 22 SimSiam models, we fit a
linear model to predict the validation accuracy from the loss and AUC. Figure 4
shows that this linear model is highly accurate, with R2 = 0.950. Strongly
negative coefficients on the loss and AUC make sense: lower loss and less collapse
result in more useful features. Figure 4 (left) shows that this linear fit works for
both ResNet-18 and ResNet-34, with accurate predictions for most models. Note
that the loss and AUC are only jointly predictive; using only loss or only AUC
poorly predicts the downstream accuracy.

This finding has two implications. First, it allows estimating models’ relative
performance without using any labels. We can simply compute the SimSiam loss
on the validation set, as well as the singular values of the representations on
the training set. If one model dominates the other in both metrics, i.e. it has
lower loss and less collapse, then it is obviously better. Otherwise, we weight
the loss and collapse metric by this linear formula to choose which model to
fine-tune for a desired downstream task. In addition to not requiring labels, this
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Fig. 5: Illustration of each data ordering method. “Multiple pass” training consists
of making E passes over the training set, so each data point is seen infrequently but
uniformly across training. “Single pass” is a form of continual learning that splits the
dataset into chunks. It trains intensely on a chunk, then throws it away and moves on
to the next chunk. “Cumulative” also splits the dataset into chunks, but never throws
away data. It accumulates data as it arrives, and begins to approximate “multiple pass”
training towards the end of training.

procedure also eliminates the need to fine-tune multiple models to see which
is best. Second, this finding means that we can improve SimSiam performance
either by decreasing the loss or by reducing collapse. Section 4 presents methods
that focus on the latter.

4 Continual Training Prevents Collapse

Section 3 showed that SimSiam models tend to collapse if the training set is
too large relative to the size of the network. At first glance, it seems that the
only solutions are to use a larger model, which requires more time and compute,
or to switch to a different self-supervised learning algorithm, which may itself
have its own disadvantages (e.g. SimCLR [6] requires big batch sizes, and BYOL
requires twice as many forward passes per update). However, in this section,
we find that SimSiam’s dimensional collapse has a simple solution that requires
no change to the architecture, loss function, or hyperparameters. Motivated by
the observation in Figure 3 that shows that collapse does not occur in models
trained on small subsets of the data, we simply partition the training set into
small subsets and train on them in sequence. We show that changing the data
order by switching to a continual learning setup is surprisingly highly effective at
preventing dimensional collapse in small models.

We change only the order in which data is presented to the model; we use the
same architecture, loss function, number of gradient steps, and hyperparameters
as before. We compare the three possible data orderings illustrated in Figure 5:

1. Multiple pass: this is the standard multi-epoch training procedure. The model
is trained for E epochs, and each training image is used once each epoch.
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Table 2: ImageNet top-1 linear probing validation accuracy for different SimSiam
training methods. We show the mean and standard deviation over 3 random seeds.

Training method ResNet-18 ResNet-34 ResNet-50

Mutiple pass 30.0± 1.8 16.8± 3.2 68.1
Cumulative 33.0± 1.9 22.2± 2.3 67.7
Single pass 44.5± 0.8 45.0± 1.1 55.9
Hybrid (switch at 40) 48.3± 0.7 50.3± 0.6 67.6

2. Single pass: this is the data-incremental setting from continual learning. The
data is randomly shuffled and partitioned into C chunks, which “arrive” one
after another. When a chunk arrives, we take N stochastic gradient steps,
after which we throw away the chunk and stop using its images. By default,
we set the number of chunks to C = 100.

3. Cumulative: this is akin to the incremental learning setting with a replay
buffer that is large enough to hold the entire training set. When a chunk
arrives, we add its images to the replay buffer and then take N stochastic
gradient steps. As more chunks arrive, the total size of the replay buffer
increases and approaches the “multiple pass” setting towards the end.

4.1 Results

Table 2 shows the result when using these 3 data orderings to train ResNet-
18, ResNet-34, and ResNet-50 architectures. Continual training (“single pass”)
improves validation accuracy by 14.5 percentage points (ResNet-18) and 28.2
percentage points (ResNet-34) over the “multiple pass” baseline, but leads to a
12.2% drop for ResNet-50. Figure 6 shows that continual training helps ResNet-
18 and ResNet-34 by preventing collapse, but ResNet-50 with “multiple pass”
training does not collapse in the first place since ResNet-50 is sufficiently big.
Thus, continual training for ResNet-50 introduces catastrophic forgetting [14,23],
making it more difficult to achieve low SimSiam loss.

Accumulating data seems natural since it acts as a curriculum and gives
the model time to fit each new image, but it only yields minor improvements.
It results in a 3-6 percentage point improvement over multi-epoch training for
ResNet-18 and ResNet-34 and is close to matching multi-epoch training for
ResNet-50. However, this is still far behind “current,” and Figure 6 shows that
“cumulative” training does not significantly help prevent collapse.

Finally, continual training does not help with other SSL algorithms, such as
MoCo-v3 [9] or BYOL [15], as shown in Figure 7. This makes sense since the plot
of their singular values shows that these methods do not collapse. This indicates
that the exponential moving average (EMA) in BYOL prevents collapse and is
actually crucial outside of the standard ImageNet-1k pretraining benchmark with
ResNet-50. Note that using EMA introduces two additional costs at training time.
First, the EMA itself requires maintaining two sets of weights that are constantly
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Fig. 6: Evolution of dimensional collapse across training. Each line shows the
singular values corresponding to an intermediate training checkpoint. For “multiple
passes” with both ResNet-18 and ResNet-34, more singular values collapse towards 0,
indicating that dimensional collapse is happening. In contrast, the “single pass” strategy
avoids collapse and in fact increases the singular values across training. ResNet-50 does
not collapse even in the multi-epoch setting, so continual training does not help here.

updated, which uses more GPU memory. Second, calculating the symmetrized
loss of 2 sets of views requires twice as many forward passes, since the target
network has different parameters than the online network.

In contrast, our proposed data ordering methods allow us to keep the efficiency
of SimSiam with no additional overhead. Furthermore, switching to the continual
setting offers its own advantages. Continual methods are faster to train, especially
with limited resources, since fitting the entire chunk in memory allows for faster
access than epoch-wise retrieval from disk or an NFS. Continual methods are
also well suited for real-life applications, where data often arrives in a stream [30].
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Fig. 7: Singular value analysis shows that MoCo and BYOL, unlike SiamSiam, do not
collapse with small models. Thus, single pass training does not improve ResNet-18
ImageNet linear probe accuracy.

Algorithmic improvements in continual training for SSL will likely transfer well
to these practical settings.

4.2 Hybrid of Continual and Multi-epoch Training

Even though the pseudo-curriculum implemented in the “cumulative” data
ordering did not improve performance, warming up the network with one method
and then finishing training with another could be useful for simultaneously (a)
preventing collapse while (b) driving the SimSiam loss lower. We experiment
with doing continual training for the first part of training, then switching to
multi-epoch training for the rest of training. Figure 8 shows how the k-NN
accuracy and AUC collapse metric change over the course of training. Continual
training for 40 chunks followed by multi-epoch training achieves the highest
k-NN validation accuracy, but only works because of the continual training in the
beginning. Right after switching training methods, the model begins to collapse,
but the initialization from continual training gives the model more room to
recover. Table 2 shows that this hybrid method achieves 48.3% linear probing
accuracy with ResNet-18, 18.3 percentage points better than the multi-epoch
baseline. It is also within 0.5% of multi-epoch training on ResNet-50, indicating
that hybrid training is a good default method to use for all architectures.

5 Conclusion

Our work provides a new understanding of non-contrastive SSL methods like Sim-
Siam and BYOL. We find that tricks like EMA, while unnecessary on ImageNet
when using large models like ResNet-50, are indeed important when using smaller
models on complex datasets. We show that the ratio between model capacity and
dataset complexity determines when collapse occurs, and that smaller models
like ResNet-18 and ResNet-34 suffer from increasing amounts of collapse when
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Fig. 8: Hybrid of Continual and Multi-epoch Training Improves Performance
We take an intermediate “single pass“ checkpoint and fine-tune it with multi-epoch
training. Our partial collapse metric (AUC) shows that multi-epoch fine-tuning tries to
collapse immediately, but the initialization is good enough that it recovers.

trained on larger subsets of ImageNet. We also show that increasing model width
is better at improving performance than increasing depth.

We show that the singular values of the representations provide an effective
metric to measure dimensional collapse. Furthermore, we find that a simple linear
function of the validation loss and the AUC is highly predictive of the downstream
linear probe accuracy. This relationship lets practitioners decide which model to
use, without needing to obtain labels or do additional fine-tuning.

Finally, we show that switching to a continual learning setting can prevent
collapse by presenting manageable chunks of data to fit in sequence. By doing
continual learning for half of training, then finishing with multi-epoch training,
we outperform the vanilla SimSiam ResNet-18 by 18.3 percentage points. This
also outperforms the BYOL ResNet-18 by 1.1 percentage points. Further work is
required to fully understand why continual learning is helpful in this setting.
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A Additional Experiments

A.1 ResNet-34 Results
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Fig. 9: Partial dimensional collapse for large subsets. Just as we did in Figure 3
for ResNet-18, we show the singular values of the representations computed by ResNet-
34 models trained on different size subsets of ImageNet. The model trained on 1%
exhibits no collapse, whereas more data (other than the 10% model) tends to lead to
more collapse. Note that the degree of collapse for ResNet-34 is in general much worse
than it is for ResNet-18. We hypothesize that this is due to its increased depth but
equivalent width, which makes it easier for SimSiam to lose information at every layer
and compute collapsed representations.

A.2 Places365

To test the generality of our results on ImageNet, we additionally examine the
effect of model capacity and data order on the 256× 256 version of Places365-
Standard, which consists of 1,803,460 images of scenes from 365 categories [36].
These experiments use the same hyperparameters and augmentation strategy
described in Section 3.1. However, note that the augmentation strategy was
designed to maximize feature learning from ImageNet’s object-centric images,
which requires different priors on invariance than the scenes in Places365. Thus,
this augmentation strategy likely is suboptimal for pretraining on Places.

Just as we did in Section 3.2, we trained SimSiam ResNet-18 models from
scratch on Places365 using different size subsets of the training dataset (1%, 5%,
10%, 50%, 100%). We find that the linear probing accuracy peaks when training
on a tiny subset of the training set. Again, this performance is not explained by
the training or validation loss. In fact, the best model achieves the worst loss.
This result matches what we found on ImageNet in Figure 2.

We also compared the different data ordering methods from Section 4: multiple
passes, single pass, and hybrid training. We choose to start hybrid training from
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Fig. 10: Comparing models trained on subsets of Places365. We trained 5 Sim-
Siam models from scratch on Places365, each on a different size subset (1%, 5%, 10%,
50%, 100%). Similar to what we found on ImageNet, the model trained on just a small
subset of the data has the highest k-NN accuracy. This model (which uses 5% of the
training set) does not have the highest generalization ability. In fact, it achieves the
worst validation loss out of the 5 trained models.
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Fig. 11: Comparing intermediate checkpoints on Places365. Unlike ImageNet,
Places365 models tend to collapse much more over the course of training, as shown
by the AUC plot on the right (higher implies more collapse). This may be due to the
mismatch between the augmentation strategy and the scenes. This causes the “multiple
pass” model accuracy to decrease significantly as it trains. However, hybrid training
reduces collapse near the end of training and achieves the best accuracy out of all three
data ordering methods.

Table 3: Places365 top-1 linear probing validation accuracy for different SimSiam
training methods.

Training method ResNet-18

Mutiple pass 30.0
Single pass 33.6
Hybrid (switch at 60) 35.0
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epoch 60 instead of epoch 40, since Places365 has 50% more images than ImageNet
and we wanted to match the number of gradient steps taken using the multi-epoch
phase across datasets. Table 3 shows that both single pass and hybrid training
improve over standard multi-epoch training, and that hybrid training is the
best of the three. We analyze the learning dynamics of these three orderings
on Places365 in Figure 11. Training on Places365 is much more unstable, as
the accuracy and collapse metric oscillate significantly across iterations. This
may be due to the mismatch between the object-centric augmentation strategy
and the structure of the Places365 scenes. The multiple pass model peaks early
in training, around iteration 20, before collapsing over the next 80 iterations.
In contrast, single pass training initially collapses more but recovers by the
end of training, and hybrid training improves over the last 40 epochs. Overall,
these results corroborate our hypothesis that collapse is responsible for decreased
performance with smaller models and that continual or hybrid training is a viable
solution to reduce collapse.

A.3 Distillation

Table 4: Distillation yields strong performance using smaller networks, regardless of
pretraining algorithm. We show the linear probe accuracy of the ResNet-50 teachers
trained by SimSiam or MoCo-v3 and the student networks obtained by distilling each
teacher network.

Pretraining Alg.
Teacher Net Student Net

ResNet-50 ResNet-18 ResNet-34

SimSiam 68.1 58.9 62.5
MoCo-v3 66.4 56.4 57.5

Model distillation [20,2] is a technique for compressing the knowledge in a
large model into a smaller model. During the distillation process, the smaller
student network learns to match the outputs of the larger teacher network.
Training a large teacher model on a dataset (e.g. with cross-entropy loss) and
distilling it into a smaller model typically performs better than directly training
the small model. If we have a lot of compute available and only care about
obtaining good small models, training a ResNet-50 with SimSiam (which does
not collapse) and distilling it into a smaller model is an effective alternative
approach for preventing partial dimensional collapse.

We distill a ResNet-50 into ResNet-18 and ResNet-34 by adding a fully
connected layer that predicts the 2048-dimensional ResNet-50 representation
and minimizes the mean-squared error (MSE). Note that this is equivalent to
learning the top singular vectors of the teacher network representations, as the
student network tries to learn a low-rank approximation of the teacher. Training
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the student is fairly straightforward. We train for 100 epochs on ImageNet-1k
using the same hyperparameters used for SimSiam training. We find that the
ResNet-50 teacher outputs are typically very small, on the order of 0.001 - 0.1,
so minimizing the MSE with respect to the raw outputs leads to small gradient
values and extremely long training times. Thus, we employ the standard trick of
computing the mean and standard deviation of each dimension of the teacher
output and using them to normalize the teacher output to have a mean of 0
and a variance of 1 in each dimension. We do this using an exponential moving
average that updates the mean and standard deviation online.

As expected, Table 4 shows that distillation produces ResNet-18 and ResNet-
34 networks with high linear probing accuracy. Note that this outcome is or-
thogonal to our work. First, distillation is incredibly compute-heavy. Training
and distilling ResNet-50 into ResNet-18 takes as much as 4× the compute as
directly training the ResNet-18. Second, distillation is effective regardless of
the pretraining algorithm – MoCo and SimSiam both benefit from distillation.
Finally, distillation performance does not resolve the fact that vanilla SimSiam
uniquely has the partial dimensional collapse problem and can only be used
to train smaller networks when using the data ordering strategies proposed in
Section 4.

A.4 Vision Transformers

Self-supervised algorithms are typically evaluated using ResNets, but different
architectures have qualitatively different behaviors. For example, self-supervised
training with DINO [5] leads Vision Transformers [12] to learn features corre-
sponding to semantic segmentation, whereas ResNets trained with DINO do not.
Thus, we experimented with using SimSiam to train Vision Transformers of vary-
ing sizes, in order to look for further architecture-related qualitative differences.
Due to computational constraints, we tried ViT-Small, which was used in [9], as
well as variants with fewer layers or attention heads. We trained these models
using SimSiam for 100 epochs using the following hyperparameters from [9]:
AdamW optimizer, learning rate of 1.5× 10−4, weight decay of 0.1, learning rate
warmup for 10 epochs, and frozen linear patch projection.

Surprisingly, these ViTs only achieve about 6-10% linear probe accuracy.
There could be several reasons for their poor performance. We could have used
bad hyperparameters, although this indicates that SimSiam is very sensitive to
hyperparameter values. This also could be due to their limited representation
size (384 dim), which makes it less likely that they have learned many useful
features. This is consistent with our findings in Section 3.2. Finally, this could
indicate that ViT fundamentally lacks some architectural inductive bias that
makes non-contrastive algorithms like SimSiam or BYOL work with ResNet.
Further work in this area could be illuminating.
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A.5 Nearest Neighbors SimSiam

We test whether a queue-based nearest neighbors loss (NNSiam, [13]) improves
SimSiam training for ResNet-18. Given a pair of augmentations x1 and x2, the
NNSiam objective is use x1 to predict the nearest neighbor of x2’s projected
representation in a MoCo-style queue. We train for 100 epochs on ImageNet with
the same hyperparameters as vanilla SimSiam and a queue of length 25600.

This achieves a linear probe accuracy of 34.4% on ImageNet, which is better
than the vanilla “multiple pass” baseline (30.0%), but still vastly underperforms
our proposed methods, including “single pass“ (44.5%) or hybrid training (48.3%).

A.6 Additional Baseline: Learning Rate Warmup

Table 5: Additional baseline for comparing ImageNet validation top-1 linear probe
accuracy for different SimSiam training methods.

Training method ResNet-18 ResNet-34 ResNet-50

Multiple Pass 30.0 16.8 68.09
Multiple Pass + 10-epoch lr warmup 28.4 35.8 -
Hybrid (switch at 40) 48.3 50.3 67.6

Figure 1(b) showed that MoCo-v3 [9] and BYOL [15] achieve reasonable
performance with ResNet-18, whereas SimSiam collapses. One potential source
of this difference is the learning rate warmup: MoCo-v3 and BYOL both utilize
a linear learning rate warmup over the first 10 epochs, whereas SimSiam uses no
warmup. We add a 10-epoch learning rate warmup to SimSiam and show that
this detail is not responsible for the huge deficit in SimSiam performance. Table
5 shows that warmup decreases ResNet-18 performance from 30.01% to 28.38%
but increases ResNet-34 performance from 16.83% to 35.82%. This still falls
quite short of the performance of our hybrid between single-pass and multi-pass
training, which outperforms this baseline by 20 percentage points (ResNet-18)
and 15 percentage points (ResNet-34).


